MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
Journal Article

Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes

2023
Request Book From Autostore and Choose the Collection Method
Overview
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used in different conventional applications for security, goods storage, transportation and asset management. In this paper, a fully inkjet-printed chipless radio frequency identification (RFID) sensor tag is presented for the wireless identification of tagged objects. The dual polarized tag consists of two resonating structures functioning wirelessly. One resonator works for encoding purpose and other resonator is used as a CO2/temperature sensor. The sensing behavior of the tag relies on the integration of a meandered structure comprising of multi-wall carbon nanotubes (MWCNT). The MWCNT is highly sensitive to CO2 gas. The backscattered response of the square-shaped cascaded split ring resonators (SRR) is analyzed through a radar cross-section (RCS) curve. The overall tag dimension is 42.1 mm × 19.5 mm. The sensing performance of the tag is examined and optimized for two different flexible substrates, i.e., PET and Kapton®HN. The flexible tag structure has the capability to transmit 5-bit data in the frequency bands of 2.36–3.9 GHz and 2.37–3.89 GHz, for PET and Kapton®HN, respectively. The proposed chipless RFID sensor tag does not require any microchip or a power source, so it has a great potential for low-cost and automated temperature/CO2 sensing applications.