MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration
Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration
Journal Article

Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration

2020
Request Book From Autostore and Choose the Collection Method
Overview
Following a wildfire, regeneration to forest can take decades to centuries and is no longer assured in many western U.S. environments given escalating wildfire severity and warming trends. After large fire years, managers prioritize where to allocate scarce planting resources, often with limited information on the factors that drive successful forest establishment. Where occurring, long‐term effects of postfire salvage operations can increase uncertainty of establishment. Here, we collected field data on postfire regeneration patterns within 13‐ to 28‐yr‐old burned patches in eastern Washington State. Across 248 plots, we sampled tree stems <4 m height using a factorial design that considered (1) fire severity, moderate vs. high severity; (2) salvage harvesting, salvaged vs. no management; and (3) potential vegetation type (PVT), sample resides in a dry, moist, or cold mixed‐conifer forest environment. We found that regeneration was abundant throughout the study region, with a median of 4414 (IQR 19,618) stems/ha across all plots. Only 15% of plots fell below minimum timber production stocking standards (350 trees/ha), and <2% of plots were unstocked. Densities were generally highest in high‐severity patches and following salvage harvesting, although high variability among plots and across sites led to variable significance for these factors. Post hoc analyses suggested that mild postfire weather conditions may have reduced water stress on tree establishment and early growth, contributing to overall high stem densities. Douglas fir was the most abundant species, particularly in moderate‐severity patches, followed by ponderosa pine, lodgepole pine, western larch, and Engelmann spruce. Generalized additive models (GAMs) revealed species‐level climatic tolerances and seed dispersal limits that portend future challenges to regeneration with expected future climate warming and increased fire activity. Postfire regeneration will occur on sites with adequate seed sources within their climatic tolerances.