MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis
Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis
Journal Article

Quantitative comparison of the performance of acoustic, optical and pressure sensors for pulse wave analysis

2025
Request Book From Autostore and Choose the Collection Method
Overview
Arterial pulse wave measurement is beneficial in clinical health assessment and is important for effectively diagnosing different types of cardiovascular disease. Computational pulse signal analysis utilizes sensors and signal processing techniques to understand, classify, and predict disease pulse patterns. However, the choice of sensor types impacts the measurement results. This study presents the first comprehensive quantitative comparison of three sensor modalities (acoustic, optical, and pressure) for radial pulse measurement, employing a novel multi-parameter analysis framework that combines time-domain, frequency-domain, and PRV measures. Among various available types, three types of sensors are compared: an acoustic sensor, an optical sensor, and a pressure sensor. Pulse wave signals were recorded from the radial artery of 30 participants using these three sensors, and the performance was evaluated using various feature extraction methods like time domain, frequency domain and pulse rate variability (PRV) measures. Further, statistical analysis (ANOVA) of the PRV measures was carried out to compare the differences in the means of the various PRV measures. Time and frequency domain features varied across sensor types, but no statistical differences were found in PRV measures across sensors. Based on the experimental results, the pressure sensor was found to perform better in capturing comprehensive wrist pulse information. The research provides evidence-based guidelines for sensor selection in pulse wave analysis applications. The findings have direct applications in developing wearable cardiovascular monitoring devices, where sensor choice critically impacts device accuracy and reliability. and clinical settings requiring pulse wave analysis for cardiovascular disease diagnosis.