MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China
Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China
Journal Article

Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China

2021
Request Book From Autostore and Choose the Collection Method
Overview
Aims Desert regions are regarded as highly sensitive to climatic changes. In arid and semi-arid desert, photosynthetic organisms from biological soil crusts are poikilohydric and sensitive to fluctuations in precipitation. How do physiological properties such as concentration of biochemical constituents and enzymes respond to a precipitation gradient from semi-arid to arid desert regions? Methods We sampled cyanobacteria and moss crusts from four desert regions with distinctly different amounts of annual rainfall. Subsequently, the contents of photosynthetic pigments, malondialdehyde (MDA), osmotic adjustment substances, and antioxidative enzyme activities were correlated with the means of annual precipitation, evaporation, and temperature at the various sites. Results Crust type, precipitation level, and their interaction had significant influences on many physiological properties (photosynthetic pigments, proline, soluble sugar, and superoxide dismutase). The contents of soluble protein, proline, and soluble sugar of cyanobacteria/moss crusts decreased with increasing precipitation level. Superoxide dismutase and catalase activities of cyanobacteria crusts decreased significantly with increasing annual precipitation. No significant variations in MDA were observed between different precipitation regions in the two crusts. Conclusions Among the environmental variables tested, the annual amount of precipitation had the strongest effect on the physiological properties of moss/cyanobacteria crusts in different regions. Crust type combined with particular precipitation level influenced the physiological properties of crusts. Moreover, both moss and cyanobacteria crusts exhibited strong physiological adaptability to changes in precipitation. This result needs to be incorporated into future ecological models, which will help in understanding the function and vulnerability of biocrusts in the face of climate change.