MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Modulating the therapeutic response of tumours to dietary serine and glycine starvation
Modulating the therapeutic response of tumours to dietary serine and glycine starvation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Modulating the therapeutic response of tumours to dietary serine and glycine starvation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modulating the therapeutic response of tumours to dietary serine and glycine starvation
Modulating the therapeutic response of tumours to dietary serine and glycine starvation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modulating the therapeutic response of tumours to dietary serine and glycine starvation
Modulating the therapeutic response of tumours to dietary serine and glycine starvation
Journal Article

Modulating the therapeutic response of tumours to dietary serine and glycine starvation

2017
Request Book From Autostore and Choose the Collection Method
Overview
Dependence on exogenous serine means that tumour growth is restricted in mice on a low-serine diet; this effect on tumour growth can be amplified by antagonizing the antioxidant response. Exploring dietary restrictions in cancer therapy Tumours acquire different metabolic adaptations to foster accelerated growth. This can lead to their dependence on crucial nutrients for anabolism. It had been shown that some non-essential amino acids, including serine, are required for tumour growth in mice. This report explores the effect of serine deprivation in endogenous tumour mouse models, uncovering how different oncogenic adaptations lead tumours to rely on exogenous serine or upregulate its cellular synthesis. Dependence on exogenous serine renders tumours sensitive to serine-deprivation diets, and this effect on tumour growth can be amplified by antagonizing the anti-oxidant response. The authors take a step towards dissecting how the metabolic vulnerabilities of cancer may be explored therapeutically in the future. The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1 ). While some cancer cells upregulate de novo serine synthesis 2 , 3 , 4 , many others rely on exogenous serine for optimal growth 5 , 6 , 7 . Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models 7 , 8 . Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.