MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies
Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies
Journal Article

Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies

2021
Request Book From Autostore and Choose the Collection Method
Overview
Enhanced warming of the Northern high latitudes has intensified thermokarst processes throughout the permafrost zone. Retrogressive thaw slumps (RTS), where thaw-driven erosion caused by ground ice melt creates terrain disturbances extending over tens of hectares, represent particularly dynamic thermokarst features. Biogeochemical transformation of the mobilized substrate may release CO 2 to the atmosphere and impact downstream ecosystems, yet its fate remains unclear. The Peel Plateau in northwestern Canada hosts some of the largest RTS features in the Arctic. Here, thick deposits of Pleistocene-aged glacial tills are overlain by a thinner layer of relatively organic-rich Holocene-aged permafrost that aggraded upward following deeper thaw and soil development during the early Holocene warm period. In this study, we characterize exposed soil layers and the mobilized material by analysing sediment properties and organic matter composition in active layer, Holocene and Pleistocene permafrost, recently thawed debris deposits and fresh deposits of slump outflow from four separate RTS features. We found that organic matter content, radiocarbon age and biomarker concentrations in debris and outflow deposits from all four sites were most similar to permafrost soils, with a lesser influence of the organic-rich active layer. Lipid biomarkers suggested a significant contribution of petrogenic carbon especially in Pleistocene permafrost. Active layer samples contained abundant intrinsically labile macromolecular components (polysaccharides, lignin markers, phenolic and N-containing compounds). All other samples were dominated by degraded organic constituents. Active layer soils, although heterogeneous, also had the highest median grain sizes, whereas debris and runoff deposits consisted of finer mineral grains and were generally more homogeneous, similar to permafrost. We thus infer that both organic matter degradation and hydrodynamic sorting during transport affect the mobilized material. Determining the relative magnitude of these two processes will be crucial to better assess the role of intensifying RTS activity in CO 2 release and ecosystem carbon fluxes.