MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues
Journal Article

Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues

2021
Request Book From Autostore and Choose the Collection Method
Overview
Betulinic acid (BA, 3β-hydroxy-lup-20(29)-en-28-oic acid) is a pentacyclic triterpene acid present predominantly in Betula ssp. (Betulaceae) and is also widely spread in many species belonging to different plant families. BA presents a wide spectrum of remarkable pharmacological properties, such as cytotoxic, anti-HIV, anti-inflammatory, antidiabetic and antimicrobial activities, including antiprotozoal effects. The present review first describes the sources of BA and discusses the chemical strategies to produce this molecule starting from betulin, its natural precursor. Next, the antiprotozoal properties of BA are briefly discussed and the chemical strategies for the synthesis of analogues displaying antiplasmodial, antileishmanial and antitrypanosomal activities are systematically presented. The antiplasmodial activity described for BA was moderate, nevertheless, some C-3 position acylated analogues showed an improvement of this activity and the hybrid models—with artesunic acid—showed the most interesting properties. Some analogues also presented more intense antileishmanial activities compared with BA, and, in addition to these, heterocycles fused to C-2/C-3 positions and amide derivatives were the most promising analogues. Regarding the antitrypanosomal activity, some interesting antitrypanosomal derivatives were prepared by amide formation at the C-28 carboxylic group of the lupane skeleton. Considering that BA can be produced either by isolation of different plant extracts or by chemical transformation of betulin, easily obtained from Betula ssp., it could be said that BA is a molecule of great interest as a starting material for the synthesis of novel antiprotozoal agents.