Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Identification of new selective CD36 inhibitors to potentiate HER2-targeted therapy in HER2-positive breast cancer
by
Toneguzzo, Paolo
, Arosio, Daniela
, Franceschini, Alma
, Castagnoli, Lorenzo
, Mastrangelo, Eloise
, Ligorio, Francesca
, Rizzo, Angela M.
, Pupa, Serenella M.
, Seneci, Pierfausto
, Milani, Mario
, Corsetto, Paola A.
, Vernieri, Claudio
, Galasso, Giorgia
, Cocomazzi, Paolo
, Regondi, Viola
, Bigliardi, Martina
, Tagliabue, Elda
, Capuzzoni, Cristian
, Bonì, Francesco
in
631/114
/ 631/154
/ 631/67
/ 631/67/1347
/ 631/92
/ Addictions
/ Antibodies
/ Antineoplastic Agents - chemistry
/ Antineoplastic Agents - pharmacology
/ Apoptosis
/ Bioassays
/ Biosynthesis
/ Breast cancer
/ Breast Neoplasms - drug therapy
/ Breast Neoplasms - genetics
/ Breast Neoplasms - metabolism
/ Breast Neoplasms - pathology
/ CD36
/ CD36 antigen
/ CD36 Antigens - antagonists & inhibitors
/ CD36 Antigens - chemistry
/ CD36 Antigens - metabolism
/ Cell Line, Tumor
/ Cell proliferation
/ Cell Proliferation - drug effects
/ Cell viability
/ Crystal structure
/ Cytotoxicity
/ Drug discovery technologies
/ Drug resistance
/ ErbB-2 protein
/ Fatty acid uptake
/ Female
/ Gas chromatography
/ HER2
/ Humanities and Social Sciences
/ Humans
/ Internalization
/ Intracellular
/ Ionization
/ Kinases
/ Ligands
/ Lipid metabolism
/ Lipids
/ Liver cancer
/ Metabolic pathways
/ Metabolism
/ Molecular Docking Simulation
/ Molecular Targeted Therapy
/ multidisciplinary
/ Phenotypes
/ Proteins
/ Receptor, ErbB-2 - antagonists & inhibitors
/ Receptor, ErbB-2 - genetics
/ Receptor, ErbB-2 - metabolism
/ Science
/ Science (multidisciplinary)
2025
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Identification of new selective CD36 inhibitors to potentiate HER2-targeted therapy in HER2-positive breast cancer
by
Toneguzzo, Paolo
, Arosio, Daniela
, Franceschini, Alma
, Castagnoli, Lorenzo
, Mastrangelo, Eloise
, Ligorio, Francesca
, Rizzo, Angela M.
, Pupa, Serenella M.
, Seneci, Pierfausto
, Milani, Mario
, Corsetto, Paola A.
, Vernieri, Claudio
, Galasso, Giorgia
, Cocomazzi, Paolo
, Regondi, Viola
, Bigliardi, Martina
, Tagliabue, Elda
, Capuzzoni, Cristian
, Bonì, Francesco
in
631/114
/ 631/154
/ 631/67
/ 631/67/1347
/ 631/92
/ Addictions
/ Antibodies
/ Antineoplastic Agents - chemistry
/ Antineoplastic Agents - pharmacology
/ Apoptosis
/ Bioassays
/ Biosynthesis
/ Breast cancer
/ Breast Neoplasms - drug therapy
/ Breast Neoplasms - genetics
/ Breast Neoplasms - metabolism
/ Breast Neoplasms - pathology
/ CD36
/ CD36 antigen
/ CD36 Antigens - antagonists & inhibitors
/ CD36 Antigens - chemistry
/ CD36 Antigens - metabolism
/ Cell Line, Tumor
/ Cell proliferation
/ Cell Proliferation - drug effects
/ Cell viability
/ Crystal structure
/ Cytotoxicity
/ Drug discovery technologies
/ Drug resistance
/ ErbB-2 protein
/ Fatty acid uptake
/ Female
/ Gas chromatography
/ HER2
/ Humanities and Social Sciences
/ Humans
/ Internalization
/ Intracellular
/ Ionization
/ Kinases
/ Ligands
/ Lipid metabolism
/ Lipids
/ Liver cancer
/ Metabolic pathways
/ Metabolism
/ Molecular Docking Simulation
/ Molecular Targeted Therapy
/ multidisciplinary
/ Phenotypes
/ Proteins
/ Receptor, ErbB-2 - antagonists & inhibitors
/ Receptor, ErbB-2 - genetics
/ Receptor, ErbB-2 - metabolism
/ Science
/ Science (multidisciplinary)
2025
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Identification of new selective CD36 inhibitors to potentiate HER2-targeted therapy in HER2-positive breast cancer
by
Toneguzzo, Paolo
, Arosio, Daniela
, Franceschini, Alma
, Castagnoli, Lorenzo
, Mastrangelo, Eloise
, Ligorio, Francesca
, Rizzo, Angela M.
, Pupa, Serenella M.
, Seneci, Pierfausto
, Milani, Mario
, Corsetto, Paola A.
, Vernieri, Claudio
, Galasso, Giorgia
, Cocomazzi, Paolo
, Regondi, Viola
, Bigliardi, Martina
, Tagliabue, Elda
, Capuzzoni, Cristian
, Bonì, Francesco
in
631/114
/ 631/154
/ 631/67
/ 631/67/1347
/ 631/92
/ Addictions
/ Antibodies
/ Antineoplastic Agents - chemistry
/ Antineoplastic Agents - pharmacology
/ Apoptosis
/ Bioassays
/ Biosynthesis
/ Breast cancer
/ Breast Neoplasms - drug therapy
/ Breast Neoplasms - genetics
/ Breast Neoplasms - metabolism
/ Breast Neoplasms - pathology
/ CD36
/ CD36 antigen
/ CD36 Antigens - antagonists & inhibitors
/ CD36 Antigens - chemistry
/ CD36 Antigens - metabolism
/ Cell Line, Tumor
/ Cell proliferation
/ Cell Proliferation - drug effects
/ Cell viability
/ Crystal structure
/ Cytotoxicity
/ Drug discovery technologies
/ Drug resistance
/ ErbB-2 protein
/ Fatty acid uptake
/ Female
/ Gas chromatography
/ HER2
/ Humanities and Social Sciences
/ Humans
/ Internalization
/ Intracellular
/ Ionization
/ Kinases
/ Ligands
/ Lipid metabolism
/ Lipids
/ Liver cancer
/ Metabolic pathways
/ Metabolism
/ Molecular Docking Simulation
/ Molecular Targeted Therapy
/ multidisciplinary
/ Phenotypes
/ Proteins
/ Receptor, ErbB-2 - antagonists & inhibitors
/ Receptor, ErbB-2 - genetics
/ Receptor, ErbB-2 - metabolism
/ Science
/ Science (multidisciplinary)
2025
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Identification of new selective CD36 inhibitors to potentiate HER2-targeted therapy in HER2-positive breast cancer
Journal Article
Identification of new selective CD36 inhibitors to potentiate HER2-targeted therapy in HER2-positive breast cancer
2025
Request Book From Autostore
and Choose the Collection Method
Overview
HER2 overexpression/amplification (HER2+) occurs in approximately 15–20% of breast cancer (BC) and identifies a highly aggressive BC subtype. The cure rate of HER2 + BC has been significantly increased through recent clinical achievements; however, a non-negligible proportion of patients still either fails to respond or acquires resistance to targeted therapies, highlighting the need for novel treatment strategies. As demonstrated in robust preclinical studies, HER2 + BC is considered a neoplastic disease with a peculiar lipogenic phenotype, due to its crucial addiction to an exacerbated need for fatty acids (FAs) produced via FA synthase (FASN), the central lipogenic enzyme required for intracellular de novo FA biosynthesis. FASN is overexpressed/activated in most HER2 + BC cells sustaining their growth, proliferation, and aggressiveness through a reciprocal direct interplay with the HER2-driven oncogenic signaling. Recent evidence shows that rewiring of lipid metabolism in the presence of pharmacological HER2 inhibition impairs FASN up-regulation and activates the compensatory lipid metabolic pathway of FA uptake via the altered expression/activity of the transmembrane CD36 FA transporter. Thus, the latter is emerging as a potentially new and targettable mechanism of resistance to anti-HER2 therapies. Due to the limited availability of drug-like compounds that selectively target CD36, in this study we screened a library of commercial compounds through in silico docking on the crystal structure of the CD36 extracellular domain. We evaluated their chemical-physical, biological and metabolic properties through microscale thermophoresis and molecular dynamics analyses, cell viability assays performed in monotherapy and dual blockade, and gas chromatography-flame ionization detector and BODIPY C16 uptake analyses. Among the best ranked compounds, we selected two promising hits with micromolar affinity for CD36, showing in vitro that they decrease per se the proliferation of HER2 + BC cells resistant to anti-HER2 agents, induce apoptotic effects, significantly reduce FA intracellular internalization, and potentiate the cytotoxic activity of lapatinib, i.e. the most suitable anti-HER2 drug used in in vitro bioassays. Taken together, these findings support that our novel anti-CD36 small molecules should undergo hit-to-lead optimization to prospectively improve the efficacy of anti-HER2 agents in HER2 + BC refractory to targeted therapy.
Publisher
Nature Publishing Group UK,Nature Publishing Group,Nature Portfolio
Subject
/ 631/154
/ 631/67
/ 631/92
/ Antineoplastic Agents - chemistry
/ Antineoplastic Agents - pharmacology
/ Breast Neoplasms - drug therapy
/ Breast Neoplasms - metabolism
/ Breast Neoplasms - pathology
/ CD36
/ CD36 Antigens - antagonists & inhibitors
/ Cell Proliferation - drug effects
/ Female
/ HER2
/ Humanities and Social Sciences
/ Humans
/ Kinases
/ Ligands
/ Lipids
/ Molecular Docking Simulation
/ Proteins
/ Receptor, ErbB-2 - antagonists & inhibitors
/ Receptor, ErbB-2 - metabolism
/ Science
This website uses cookies to ensure you get the best experience on our website.