MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging
Journal Article

Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging

2025
Request Book From Autostore and Choose the Collection Method
Overview
Recent evidence challenged the traditional, categorical approach to sex differences, indicating that each human brain comprises a mosaic of features, some of which are more common among males, others, among females, whereas the remaining are equally common between sexes. Thus, a focus on regional sexual differentiation of brain function, instead of holistic sex-based categorization, could be more useful for understanding psychiatric conditions, such as mood and behavioural disorders, to which males and females are differentially vulnerable. To probe this untested hypothesis, we estimate sexual differentiation within each brain in a longitudinal ( N  = 199) and cross-sectional ( N  = 277) sample of male and female adolescents. Greater feminization of association networks, involved in higher-order cognition, compared to sensory networks, at ages 9-10 correlates with earlier puberty and greater immune/metabolic dysregulation at ages 11-12, particularly among girls. Greater masculinization of association networks relates to later puberty and reduced immune/metabolic dysregulation, especially among boys. The brain and physiological profiles sequentially mediate the relationship between genetic risk and rising mood/behavioural symptoms. These links are replicated in the cross-sectional sample and shown to hold across sexes. Our study emphasizes the importance of integrating assessments of regional sexual differentiation and physiology in personalizing psychiatric intervention in adolescence. Sexual differentiation in brain function along a sensory to-higher-order cognition axis is related to physiological aging and distinguishes between adolescent risk for mood vs behavioral problems, both longitudinally and cross-sectionally.