MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus
Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus
Journal Article

Chromosome-scale genome assembly and annotation of two geographically distinct strains of malaria vector Anopheles albimanus

2025
Request Book From Autostore and Choose the Collection Method
Overview
Anopheles albimanus is one of the principal malaria vectors in the Americas and exhibits phenotypic variation across its geographic distribution. High-quality reference genomes from geographically distant populations are essential to deepen our understanding of the biology, evolution, and genetic variation of this important malaria vector . In this study, we applied long-read PacBio and short-read Illumina sequencing technologies to assemble the complete genomes of two reference strains of An. albimanus, Stecla (originating from El Salvador), and Cartagena (originating from Colombia); and investigated the structural features of these genomes, including gene content, transposable elements (TEs), genetic variation, and structural rearrangements. Our hybrid assembly approach generated reference-quality genomes for each strain and recovered ~ 96% of the expected genome size. The genome assemblies of Stecla and Cartagena consisted of 109 and 149 scaffolds, with estimated genome sizes of 167.5 Mbp (N 50  = 88 Mbp) and 167.1 Mbp (N 50  = 87 Mbp), respectively. They exhibited a high level of completeness and contained a smaller number of gaps and ambiguous bases than either of the two previously published reference genomes for this species, suggesting a considerable improvement in the quality and completeness of the assemblies. A total of 12,082 and 12,120 protein-coding genes were predicted in Stecla and Cartagena, respectively. TE analyses indicated more repetitive content was captured in the long read assemblies. The assembled genomes shared 98.12% pairwise identity and synteny analyses suggested that gene position was conserved between both strains. These newly assembled genomes will serve as an important resource for future research in comparative genomics, proteomics, epigenetics, transcriptomics, and functional analysis of this important malaria vector.