MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy
Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy
Journal Article

Quantifying complexity in DNA structures with high resolution Atomic Force Microscopy

2025
Request Book From Autostore and Choose the Collection Method
Overview
DNA topology is essential for regulating cellular processes and maintaining genome stability, yet it is challenging to quantify due to the size and complexity of topologically constrained DNA molecules. By combining high-resolution Atomic Force Microscopy (AFM) with a new high-throughput automated pipeline, we can quantify the length, conformation, and topology of individual complex DNA molecules with sub-molecular resolution. Our pipeline uses deep-learning methods to trace the backbone of individual DNA molecules and identify crossing points, efficiently determining which segment passes over which. We use this pipeline to determine the structure of stalled replication intermediates from Xenopus egg extracts, including theta structures and late replication products, and the topology of plasmids, knots and catenanes from the E. coli Xer recombination system. We use coarse-grained simulations to quantify the effect of surface immobilisation on twist-writhe partitioning. Our pipeline opens avenues for understanding how fundamental biological processes are regulated by DNA topology. Here the authors develop a pipeline combining atomic force microscopy and deep learning to trace and quantify the structure of complex DNA molecules like replication intermediates and recombination products. Furthermore, they characterise surface deposition effects using simulations.