MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Holocene climate change in arid Australia from speleothem and alluvial records
Holocene climate change in arid Australia from speleothem and alluvial records
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Holocene climate change in arid Australia from speleothem and alluvial records
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Holocene climate change in arid Australia from speleothem and alluvial records
Holocene climate change in arid Australia from speleothem and alluvial records

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Holocene climate change in arid Australia from speleothem and alluvial records
Holocene climate change in arid Australia from speleothem and alluvial records
Journal Article

Holocene climate change in arid Australia from speleothem and alluvial records

2010
Request Book From Autostore and Choose the Collection Method
Overview
New high-resolution MC-ICPMS U/Th ages and C and O isotopic analyses from a Holocene speleothem in arid south-central Australia provide evidence for increased effective precipitation (EP) relative to present at c. 11.5 ka and c. 8—5 ka, peak moisture at 7—6 ka, and onset of an arid climate similar to present by c. 5 ka. δ18O and δ13C time-series data exhibit marked (>+1‰) contemporaneous excursions over base-line values of −5.3‰ and −11.0‰, respectively, suggesting pronounced moisture variability during the early middle Holocene ‘climatic optimum’. Optically stimulated luminescence and 14C ages from nearby terraced aggradational alluvial deposits indicate a paucity of large floods in the Late Pleistocene and at least five large flood events in the last c. 6 kyr, interpreted to mark an increased frequency of extreme rainfall events in the middle Holocene despite overall reduced EP. Increased EP in south-central Australia during the early to middle Holocene resulted from (1) decreased El Niño-Southern Oscillation (ENSO) variability, which reduced the frequency of El Niño-triggered droughts, (2) the prevalence of a more La Niña-like mean climatic state in the tropical Pacific Ocean, which increased available atmospheric moisture, and (3) a southward shift in the Intertropical Convergence Zone (ICTZ), which allowed tropical summer storms associated with the Australian summer monsoon (ASM) to penetrate deeper into the southern part of the continent. The onset of heightened aridity and apparent increase in large flood frequency at c. 5 ka is interpreted to indicate the establishment of an ENSO-like climate in arid Australia in the late Holocene, consistent with a variety of other terrestrial and marine proxies. The broad synchroneity of Holocene climate change across much of the Australian continent with changes in ENSO behavior suggests strong teleconnections amongst ENSO and the other climate systems such as the ASM, Indian Ocean Dipole, and Southern Annular Mode.