MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers
A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers
Journal Article

A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers

2025
Request Book From Autostore and Choose the Collection Method
Overview
Recent advancements in deep learning have shown promise in enhancing the performance of medical image analysis. In pathology, automated whole slide imaging has transformed clinical workflows by streamlining routine tasks and diagnostic and prognostic support. However, the lack of transparency of deep learning models, often described as black boxes , poses a significant barrier to their clinical adoption. This study evaluates various explainability methods for Vision Transformers, assessing their effectiveness in explaining the rationale behind their classification predictions on histopathological images. Using a Vision Transformer trained on the publicly available CAMELYON16 dataset comprising of 399 whole slide images of lymph node metastases of patients with breast cancer, we conducted a comparative analysis of a diverse range of state-of-the-art techniques for generating explanations through heatmaps, including Attention Rollout, Integrated Gradients, RISE, and ViT-Shapley. Our findings reveal that Attention Rollout and Integrated Gradients are prone to artifacts, while RISE and particularly ViT-Shapley generate more reliable and interpretable heatmaps. ViT-Shapley also demonstrated faster runtime and superior performance in insertion and deletion metrics. These results suggest that integrating ViT-Shapley-based heatmaps into pathology reports could enhance trust and scalability in clinical workflows, facilitating the adoption of explainable artificial intelligence in pathology.