MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
Journal Article

A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer

2023
Request Book From Autostore and Choose the Collection Method
Overview
One of the great challenges in therapeutic oncology is determining who might achieve survival benefits from a particular therapy. Studies on longitudinal circulating tumor DNA (ctDNA) dynamics for the prediction of survival have generally been small or nonrandomized. We assessed ctDNA across 5 time points in 466 non-small-cell lung cancer (NSCLC) patients from the randomized phase 3 IMpower150 study comparing chemotherapy-immune checkpoint inhibitor (chemo-ICI) combinations and used machine learning to jointly model multiple ctDNA metrics to predict overall survival (OS). ctDNA assessments through cycle 3 day 1 of treatment enabled risk stratification of patients with stable disease (hazard ratio (HR) = 3.2 (2.0–5.3), P  < 0.001; median 7.1 versus 22.3 months for high- versus low-intermediate risk) and with partial response (HR = 3.3 (1.7–6.4), P  < 0.001; median 8.8 versus 28.6 months). The model also identified high-risk patients in an external validation cohort from the randomized phase 3 OAK study of ICI versus chemo in NSCLC (OS HR = 3.73 (1.83–7.60), P  = 0.00012). Simulations of clinical trial scenarios employing our ctDNA model suggested that early ctDNA testing outperforms early radiographic imaging for predicting trial outcomes. Overall, measuring ctDNA dynamics during treatment can improve patient risk stratification and may allow early differentiation between competing therapies during clinical trials. A machine learning model that uses longitudinal ctDNA metrics robustly predicts survival in two phase 3 trials of patients with metastatic NSCLC, which may improve therapy selection and risk stratification.