MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
Journal Article

A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts

2022
Request Book From Autostore and Choose the Collection Method
Overview
The MoBiMet (Mobile Biometeorology System) is a low-cost device for thermal comfort monitoring, designed for long-term deployment in indoor or semi-outdoor occupational contexts. It measures air temperature, humidity, globe temperature, brightness temperature, light intensity, and wind, and is capable of calculating thermal indices (e.g., physiologically equivalent temperature (PET)) on site. It visualizes its data on an integrated display and sends them continuously to a server, where web-based visualizations are available in real-time. Data from many MoBiMets deployed in real occupational settings were used to demonstrate their suitability for large-scale and continued monitoring of thermal comfort in various contexts (industrial, commercial, offices, agricultural). This article describes the design and the performance of the MoBiMet. Alternative methods to determine mean radiant temperature (Tmrt) using a light intensity sensor and a contactless infrared thermopile were tested next to a custom-made black globe thermometer. Performance was assessed by comparing the MoBiMet to an independent mid-cost thermal comfort sensor. It was demonstrated that networked MoBiMets can detect differences of thermal comfort at different workplaces within the same building, and between workplaces in different companies in the same city. The MoBiMets can capture spatial and temporal differences of thermal comfort over the diurnal cycle, as demonstrated in offices with different stories and with different solar irradiances in a single high-rise building. The strongest sustained heat stress was recorded at industrial workplaces with heavy machinery.