MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
Journal Article

Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma

2025
Request Book From Autostore and Choose the Collection Method
Overview
Sarcomas are very complex and clinically challenging mesenchymal tumors. Although the standard therapeutic approach has improved the 5-year survival rate, many patients experience local relapses and/or distant metastases. To improve patient outcome, new strategies need to be investigated. Immunotoxins (ITs) based on rRNA N-glycosylases (also named ribosome-inactivating proteins, RIPs) are promising tools for cancer therapy because, by combining rRNA-glycosylase’s high cytotoxicity with carrier selectivity, they can specifically eliminate target neoplastic cells. In the last few years, 3D models have been extensively used in cancer research, particularly for target-specific drug screening. This study aimed to evaluate the possibility of utilizing ribosome-inactivating protein (RIP)-containing ITs to selectively target TfR1-, EGFR1- and Her2-expressing sarcoma adherent cells (ACs), spheroids (SSs) and organoids (ORs). To compare Its’ efficacy and ability to induce apoptosis, we performed dose–response viability and caspase 3/7 activation assays on rhabdomyosarcoma and osteosarcoma ACs, SSs and ORs treated with Tf-IT, αEGFR1-IT and αHer2-IT. Our results indicate that, compared to the corresponding unconjugated RIPs, all ITs showed increased cytotoxicity in sarcoma ACs. Despite the increased complexity characterizing 3D models, the higher IC50 differences between ITs and unconjugated RIPs were obtained in ORs, which appeared more resistant to the nonspecific killing of the RIPs than either the ACs or SSs, thus augmenting the therapeutic window between unconjugated and conjugated RIPs. IT induced a more delayed apoptosis in 3D compared to 2D models. Our results provide essential outcomes for the potential use of these RIP-based ITs as a therapeutic strategy to treat sarcoma.