MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Journal Article

Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting

2024
Request Book From Autostore and Choose the Collection Method
Overview
Solar irradiance nowcasting and short-term forecasting are important tools for the integration of solar plants into the electricity grid. Understanding the role of clouds and aerosols in those techniques is essential for improving their accuracy. In this study, we introduce improvements in the existing nowcasting and short-term forecasting operational systems SENSE (Solar Energy Nowcasting System) and NextSENSE achieved by using a new configuration and by upgrading cloud and aerosol inputs, and we also investigate the limitations of evaluating such models using surface-based sensors due to cloud effects. We assess the real-time estimates of surface global horizontal irradiance (GHI) produced by the improved SENSE2 operational system at high spatial and temporal resolution (∼ 5 km, 15 min) for a domain including Europe and the Middle East–North Africa (MENA) region and the short-term forecasts of GHI (up to 3 h ahead) produced by the NextSENSE2 system against ground-based measurements from 10 stations across the models' domain for a whole year (2017). Results for instantaneous (every 15 min) comparisons show that the GHI estimates are within ±50 W m−2 (or ±10 %) of the measured GHI for 61 % of the cases after the implementation of the new model configuration and a proposed bias correction. The bias ranges from −12 to 23 W m−2 (or from −2 % to 6.1 %) with a mean value of 11.3 W m−2 (2.3 %). The correlation coefficient is between 0.83 and 0.96 and has a mean value of 0.93. Statistics are significantly improved when integrating on daily and monthly scales (the mean bias is 3.3 and 2.7 W m−2, respectively). We demonstrate that the main overestimation of the SENSE2 GHI is linked with the uncertainties of the cloud-related information within the satellite pixel, while relatively low underestimation, linked with aerosol optical depth (AOD) forecasts (derived from the Copernicus Atmospheric Monitoring Service – CAMS), is reported for cloudless-sky GHI. The highest deviations for instantaneous comparisons are associated with cloudy atmospheric conditions, when clouds obscure the sun over the ground-based station. Thus, they are much more closely linked with satellite vs. ground-based comparison limitations than the actual model performance. The NextSENSE2 GHI forecasts based on the cloud motion vector (CMV) model outperform the persistence forecasting method, which assumes the same cloud conditions for future time steps. The forecasting skill (FS) of the CMV-based model compared to the persistence approach increases with cloudiness (FS is up to ∼ 20 %), which is linked mostly to periods with changes in cloudiness (which persistence, by definition, fails to predict). Our results could be useful for further studies on satellite-based solar model evaluations and, in general, for the operational implementation of solar energy nowcasting and short-term forecasting, supporting solar energy production and management.