MbrlCatalogueTitleDetail

Do you wish to reserve the book?
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode
High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode
Journal Article

High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode

2020
Request Book From Autostore and Choose the Collection Method
Overview
Considering their superior charge-transfer characteristics, easy tenability of energy levels, and low production cost, organic semiconductors are ideal for photoelectrochemical (PEC) hydrogen production. However, organic-semiconductor-based photoelectrodes have not been extensively explored for PEC water-splitting because of their low stability in water. Herein, we report high-performance and stable organic-semiconductors photoanodes consisting of p -type polymers and n -type non-fullerene materials, which is passivated using nickel foils, GaIn eutectic, and layered double hydroxides as model materials. We achieve a photocurrent density of 15.1 mA cm −2 at 1.23 V vs. reversible hydrogen electrode (RHE) with an onset potential of 0.55 V vs. RHE and a record high half-cell solar-to-hydrogen conversion efficiency of 4.33% under AM 1.5 G solar simulated light. After conducting the stability test at 1.3 V vs. RHE for 10 h, 90% of the initial photocurrent density are retained, whereas the photoactive layer without passivation lost its activity within a few minutes. While organic semiconductors may be useful in photoelectrochemical water-splitting materials, they show low stability in water. Here, the authors report high-performance and stable organic-semiconductor-based photoanodes passivated using nickel foils, GaIn eutectic, and layered double hydroxides.