MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Journal Article

Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application

2023
Request Book From Autostore and Choose the Collection Method
Overview
In rice paddy soil, biological nitrogen fixation is important for sustaining soil nitrogen fertility and rice growth. Anaeromyxobacter and Geobacteriaceae, iron-reducing bacteria belonging to Deltaproteobacteria, are newly discovered nitrogen-fixing bacteria dominant in paddy soils. They utilize acetate, a straw-derived major carbon compound in paddy soil, as a carbon and energy source, and ferric iron compounds as electron acceptors for anaerobic respiration. In our previous paddy field experiments, a significant increase in soil nitrogen-fixing activity was observed after the application of iron powder to straw-returned paddy field soil. In addition, combining iron application with 60–80% of the conventional nitrogen fertilizer rate could maintain rice yields similar to those with the conventional nitrogen fertilization rate. It was thus suggested that iron application to paddy soil increased the amount of nitrogen fixed in the soil by enhancing nitrogen fixation by diazotrophic iron-reducing bacteria. The present study was conducted to directly verify this suggestion by 15N-IRMS analysis combined with 15N-DNA-stable isotope probing of iron-applied and no-iron-applied plot soils in an experimental paddy field. In no-iron-applied native paddy soil, atmospheric 15N2 was incorporated into the soil by biological nitrogen fixation, in which diazotrophic iron-reducing bacteria were the most active drivers of nitrogen fixation. In iron-applied paddy soil, the amount of 15N incorporated into the soil was significantly higher due to enhanced biological nitrogen fixation, especially via diazotrophic iron-reducing bacteria, the most active drivers of nitrogen fixation in the soil. Thus, our previous suggestion was verified. This study provided a novel picture of active nitrogen-fixing microorganisms dominated by diazotrophic iron-reducing bacteria in paddy soil, and directly proved the effectiveness of iron application to enhance their nitrogen fixation and increase the incorporation of atmospheric nitrogen into soil. The enhancement of biological nitrogen fixation in paddy fields by iron application may lead to novel and unique paddy soil management strategies to increase soil nitrogen fertility and ensure rice yields with reduced nitrogen fertilizer input and lower environmental nitrogen burdens.