MbrlCatalogueTitleDetail

Do you wish to reserve the book?
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans
In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans
Journal Article

In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans

2014
Request Book From Autostore and Choose the Collection Method
Overview
Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans) . In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca 2+ channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals. Single molecule fluorescence microscopy is a powerful technique to study protein dynamics in cells, but it has not been applied to adult animals. The authors use complementation-activated light microscopy in C. elegans to discover that dystrophin regulates the diffusion properties of voltage-dependent calcium ion channels at the surface of body-wall muscle cells.