MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Estimating parameters and predicting membrane voltages with conductance-based neuron models
Estimating parameters and predicting membrane voltages with conductance-based neuron models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Estimating parameters and predicting membrane voltages with conductance-based neuron models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Estimating parameters and predicting membrane voltages with conductance-based neuron models
Estimating parameters and predicting membrane voltages with conductance-based neuron models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Estimating parameters and predicting membrane voltages with conductance-based neuron models
Estimating parameters and predicting membrane voltages with conductance-based neuron models
Journal Article

Estimating parameters and predicting membrane voltages with conductance-based neuron models

2014
Request Book From Autostore and Choose the Collection Method
Overview
Recent results demonstrate techniques for fully quantitative, statistical inference of the dynamics of individual neurons under the Hodgkin–Huxley framework of voltage-gated conductances. Using a variational approximation, this approach has been successfully applied to simulated data from model neurons. Here, we use this method to analyze a population of real neurons recorded in a slice preparation of the zebra finch forebrain nucleus HVC. Our results demonstrate that using only 1,500 ms of voltage recorded while injecting a complex current waveform, we can estimate the values of 12 state variables and 72 parameters in a dynamical model, such that the model accurately predicts the responses of the neuron to novel injected currents. A less complex model produced consistently worse predictions, indicating that the additional currents contribute significantly to the dynamics of these neurons. Preliminary results indicate some differences in the channel complement of the models for different classes of HVC neurons, which accords with expectations from the biology. Whereas the model for each cell is incomplete (representing only the somatic compartment, and likely to be missing classes of channels that the real neurons possess), our approach opens the possibility to investigate in modeling the plausibility of additional classes of channels the cell might possess, thus improving the models over time. These results provide an important foundational basis for building biologically realistic network models, such as the one in HVC that contributes to the process of song production and developmental vocal learning in songbirds.