MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study
Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study
Journal Article

Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: a regions of interest study

2023
Request Book From Autostore and Choose the Collection Method
Overview
Alzheimer’s disease (AD) is characterized by a distinct pattern of cortical thinning and resultant changes in cognition and function. These result in prominent deficits in cognitive-motor automaticity. The relationship between AD-related cortical thinning and decreased automaticity is not well-understood. We aimed to investigate the relationship between cortical thickness regions-of-interest (ROI) and automaticity and attention allocation in AD using hypothesis-driven and exploratory approaches. We performed an ROI analysis of 46 patients with AD. Data regarding MR images, demographic characteristics, cognitive-motor dual task performance, and cognition were extracted from medical records. Cortical thickness was calculated from MR T1 images using FreeSurfer. Data from the dual task assessment was used to calculate the combined dual task effect (cDTE), a measure of cognitive-motor automaticity, and the modified attention allocation index (mAAI). Four hierarchical multiple linear regression models were conducted regressing cDTE and mAAI separately on (1) hypothesis-generated ROIs and (2) exploratory ROIs. For cDTE, cortical thicknesses explained 20.5% (p = 0.014) and 25.9% (p = 0.002) variability in automaticity in the hypothesized ROI and exploratory models, respectively. The dorsal lateral prefrontal cortex (DLPFC) (β =  − 0.479, p = 0.018) and superior parietal cortex (SPC) (β = 0.467, p = 0.003), and were predictors of automaticity. For mAAI, cortical thicknesses explained 20.7% (p = 0.025) and 28.3% (p = 0.003) variability in attention allocation in the hypothesized ROI and exploratory models, respectively. Thinning of SPC and fusiform gyrus were associated with motor prioritization (β =  − 0.405, p = 0.013 and β =  − 0.632, p = 0.004, respectively), whereas thinning of the DLPFC was associated with cognitive prioritization (β = 0.523, p = 0.022). Cortical thinning in AD was related to cognitive-motor automaticity and task prioritization, particularly in the DLPFC and SPC. This suggests that these regions may play a primary role in automaticity and attentional strategy during dual-tasking.