MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Journal Article

Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission

2016
Request Book From Autostore and Choose the Collection Method
Overview
Polyamines are positively-charged organic molecules that are important for cellular growth and division. Polyamines and their synthesizing enzymes are particularly abundant in rapidly proliferating eukaryotic cells such as parasitic protozoa and cancer cells. Polyamine biosynthesis inhibitors, such as Elfornithine, are now being considered for cancer prevention and have been used effectively against Trypanosoma brucei. Inhibitors of polyamine biosynthesis have caused growth arrest of Plasmodium falciparum blood stages in vitro, but in P. berghei only partial inhibition has been observed. While polyamine biosynthesis enzymes are characterized and conserved in Plasmodium spp., little is known on the biological roles of these enzymes inside malaria parasite hosts. The bifunctional polyamine biosynthesis enzyme S-adenosyl methionine decarboxylase/ornithine decarboxylase (AdoMetDC/ODC) was targeted for deletion in P. yoelii. Deletion of AdoMetDC/ODC significantly reduced blood stage parasitemia but Anopheles transmission was completely blocked. We showed that male gametocytogenesis and male gamete exflagellation were abolished and consequently no ookinetes or oocyst sporozoites could be generated from adometdc/odc(–) parasites. Supplementation of putrescine and spermidine did not rescue the defective phenotypes of male gametocytes and gametes of the knockout parasites. These results highlight the crucial role of polyamine homeostasis in the development and functions of Plasmodium erythrocytic stages in the blood and in the mosquito vector and validate polyamine biosynthesis pathway enzymes as drug targeting candidates for malaria parasite transmission blocking.