MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD
Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD
Journal Article

Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters – an animal model of life style intervention in NAFLD

2019
Request Book From Autostore and Choose the Collection Method
Overview
Reproducible animal models to recapitulate the pathophysiology of non-alcoholic fatty liver disease (NAFLD) are urgently required to improve the understanding of the mechanisms of liver injury and to explore novel therapeutic options. Current guidelines recommend life-style interventions as first-line therapy for NAFLD and these types of intervention are considered standard-of-care. The current study establishes a reproducible mouse model of a life-style intervention in NAFLD using voluntary wheel running (VWR). Male C57BL/6J mice were fed a high-fat, high-carbohydrate diet (HFD) to induce NAFLD or a corresponding control diet for 12 weeks. Starting at week 9 of the obesogenic NAFLD diet, mice were randomized to either free access to a running wheel or being single caged resembling a sedentary (SED) life-style. VWR induced a transient weight reduction in HFD-fed mice up until week 10. In contrast to the SED mice, VWR mice exhibited normal ALT at the end of the intervention, while the metabolic alterations including elevated fasting glucose, insulin, triglyceride, and total cholesterol levels remained almost unchanged. Additionally, VWR prevented HFD-induced hepatic steatosis by alterations in key liver metabolic processes including the induction of fatty acid β-oxidation and lipogenesis inhibition following increased AMP-activated protein kinase (AMPK)-α activity. Phosphorylation of the serine kinase Akt in hepatic tissue was enhanced following VWR. Furthermore, VWR mice were protected from HFD-induced expression of pro-inflammatory cytokines, chemokines and liver macrophage infiltration. The SED/HFD group exhibited increasing activity of hepatic nuclear factor (NF)-κB p65, which was absent following exercise in the VWR/HFD group. In summary, in an obesogenic mouse model of NAFLD physical exercise improves fatty acid and glucose homeostasis and protects from macrophage-associated hepatic inflammation.