MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Quantification of early learning and movement sub-structure predictive of motor performance
Quantification of early learning and movement sub-structure predictive of motor performance
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Quantification of early learning and movement sub-structure predictive of motor performance
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Quantification of early learning and movement sub-structure predictive of motor performance
Quantification of early learning and movement sub-structure predictive of motor performance

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Quantification of early learning and movement sub-structure predictive of motor performance
Quantification of early learning and movement sub-structure predictive of motor performance
Journal Article

Quantification of early learning and movement sub-structure predictive of motor performance

2021
Request Book From Autostore and Choose the Collection Method
Overview
Time-to-fall off an accelerating rotating rod (rotarod) is widely utilized to evaluate rodent motor performance. We reasoned that this simple outcome could be refined with additional measures explicit in the task (however inconspicuously) to examine what we call movement sub-structure. Our goal was to characterize normal variation or motor impairment more robustly than by using time-to-fall. We also hypothesized that measures (or features) early in the sub-structure could anticipate the learning expected of a mouse undergoing serial trials. Using normal untreated and baclofen-treated movement-impaired mice, we defined these features and automated their analysis using paw video-tracking in three consecutive trials, including paw location, speed, acceleration, variance and approximate entropy. Spectral arc length yielded speed and acceleration uniformity. We found that, in normal mice, paw movement smoothness inversely correlated with rotarod time-to-fall for the three trials. Greater approximate entropy in vertical movements, and opposite changes in horizontal movements, correlated with greater first-trial time-to-fall. First-trial horizontal approximate entropy in the first few seconds predicted subsequent time-to-fall. This allowed for the separation, after only one rotarod trial, of different-weight, untreated mouse groups, and for the detection of mice otherwise unimpaired after baclofen, which displayed a time-to-fall similar to control. A machine-learning support vector machine classifier corroborated these findings. In conclusion, time-to-fall off a rotarod correlated well with several measures, including some obtained during the first few seconds of a trial, and some responsive to learning over the first two trials, allowing for predictions or preemptive experimental manipulations before learning completion.