MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Journal Article

Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations

2022
Request Book From Autostore and Choose the Collection Method
Overview
Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods. Here, the authors apply a neural relational inference model to infer dynamic networks of interacting residues in protein molecular dynamics simulations. The model can predict allosteric communication pathways and relative free energy changes upon mutations.