MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans
Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans
Journal Article

Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans

2020
Request Book From Autostore and Choose the Collection Method
Overview
Gene expression oscillators can structure biological events temporally and spatially. Different biological functions benefit from distinct oscillator properties. Thus, finite developmental processes rely on oscillators that start and stop at specific times, a poorly understood behavior. Here, we have characterized a massive gene expression oscillator comprising > 3,700 genes in Caenorhabditis elegans larvae. We report that oscillations initiate in embryos, arrest transiently after hatching and in response to perturbation, and cease in adults. Experimental observation of the transitions between oscillatory and non‐oscillatory states at high temporal resolution reveals an oscillator operating near a Saddle Node on Invariant Cycle (SNIC) bifurcation. These findings constrain the architecture and mathematical models that can represent this oscillator. They also reveal that oscillator arrests occur reproducibly in a specific phase. Since we find oscillations to be coupled to developmental processes, including molting, this characteristic of SNIC bifurcations endows the oscillator with the potential to halt larval development at defined intervals, and thereby execute a developmental checkpoint function. Synopsis The authors investigate a putative developmental clock in C. elegans . Population‐ and single animal‐based analyses uncover a gene expression oscillator that may support a developmental checkpoint function. Extensive rhythmic gene expression in C. elegans larvae is initiated in embryos and is coupled to molting. The oscillator is arrested in a specific phase (normally observed at molt exit) in adults, early L1 and dauer larvae. A bifurcation of the oscillator constitutes a putative developmental checkpoint mechanism. Characteristics of oscillation onset and offset constrain potential oscillator mechanisms as well as mathematical models and their parameters. Graphical Abstract The authors investigate a putative developmental clock in C. elegans . Population‐ and single animal‐based analyses uncover a gene expression oscillator that may support a developmental checkpoint function.

MBRLCatalogueRelatedBooks