MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Learning from interpretation transition
Learning from interpretation transition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Learning from interpretation transition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Learning from interpretation transition
Learning from interpretation transition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Learning from interpretation transition
Learning from interpretation transition
Journal Article

Learning from interpretation transition

2014
Request Book From Autostore and Choose the Collection Method
Overview
We propose a novel framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations ( I , J ) such that J = T P ( I ), where T P is the immediate consequence operator, we infer the program  P . The learning framework can be repeatedly applied for identifying Boolean networks from basins of attraction. Two algorithms have been implemented for this learning task, and are compared using examples from the biological literature. We also show how to incorporate background knowledge and inductive biases, then apply the framework to learning transition rules of cellular automata.