MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor
Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor
Journal Article

Monitoring of pesticide amount in water and drinkable food by a fluorescence‐based biosensor

2022
Request Book From Autostore and Choose the Collection Method
Overview
The identification of pollutants is crucial to protect water resources and ensure food safety. The available analytical methodologies allow reliable detection of organic pollutants such as pesticides; however, there is the need for faster, direct and continuous methodologies for real‐time monitoring of pesticides. Fluorescent‐based biosensors have been recently proposed as a valid alternative due to their advantage of being easy, cheap and specific. In this context, the aim of the present EU‐FORA fellowship programme was to develop and apply a fluorescence‐based biosensing device for the detection of organophosphate (OP) pesticides in water samples and drinkable food. The study was addressed using a mutant of the thermostable esterase‐2 from Alicyclobacillus acidocaldarius (EST2‐S35C) as a bioreceptor for OP pesticides. The use of EST2 involves some significant advantages including specificity and affinity towards OPs, and high stability over time in a different range of temperatures and pH. The protein was labelled to the fluorescent probe IAEDANS and fluorescence measurements of quenching in solution and in immobilised form were performed. The results showed good stability and sensitivity, reaching low limits of detection and quantification and a constant signal intensity over time. The addition of paraoxon quenched the fluorescence of the complex, reaching a plateau at 100 pmol paraoxon. The decrease of enzymatic activity of EST2‐S35C‐IAEDANS in the presence of paraoxon correlated the inhibition of the labelled enzyme with the decrease in fluorescence. The results from the application of the biosensor with real samples showed a decrease in fluorescence in surface water samples, contaminated by OPs. The use of the developed fluorescence‐based biosensor demonstrated its applicability for real samples monitoring and could ensure the production of large amounts of data in a short period of time which can be used to address environmental and food safety risk assessment.