MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups
Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups
Journal Article

Generalizing boundaries for triangular designs, and efficacy estimation at extended follow-ups

2015
Request Book From Autostore and Choose the Collection Method
Overview
Background Visceral leishmaniasis (VL) is a parasitic disease transmitted by sandflies and is fatal if left untreated. Phase II trials of new treatment regimens for VL are primarily carried out to evaluate safety and efficacy, while pharmacokinetic data are also important to inform future combination treatment regimens. The efficacy of VL treatments is evaluated at two time points, initial cure , when treatment is completed and definitive cure , commonly 6 months post end of treatment, to allow for slow response to treatment and detection of relapses. This paper investigates a generalization of the triangular design to impose a minimum sample size for pharmacokinetic or other analyses, and methods to estimate efficacy at extended follow-up accounting for the sequential design and changes in cure status during extended follow-up. Methods We provided R functions that generalize the triangular design to impose a minimum sample size before allowing stopping for efficacy. For estimation of efficacy at a second, extended, follow-up time, the performance of a shrinkage estimator (SHE), a probability tree estimator (PTE) and the maximum likelihood estimator (MLE) for estimation was assessed by simulation. Results The SHE and PTE are viable approaches to estimate an extended follow-up although the SHE performed better than the PTE: the bias and root mean square error were lower and coverage probabilities higher. Conclusions Generalization of the triangular design is simple to implement for adaptations to meet requirements for pharmacokinetic analyses. Using the simple MLE approach to estimate efficacy at extended follow-up will lead to biased results, generally over-estimating treatment success. The SHE is recommended in trials of two or more treatments. The PTE is an acceptable alternative for one-arm trials or where use of the SHE is not possible due to computational complexity. Trial registration NCT01067443 , February 2010.