MbrlCatalogueTitleDetail

Do you wish to reserve the book?
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
Journal Article

3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels

2021
Request Book From Autostore and Choose the Collection Method
Overview
Cellular models are needed to study human development and disease in vitro, and to screen drugs for toxicity and efficacy. Current approaches are limited in the engineering of functional tissue models with requisite cell densities and heterogeneity to appropriately model cell and tissue behaviors. Here, we develop a bioprinting approach to transfer spheroids into self-healing support hydrogels at high resolution, which enables their patterning and fusion into high-cell density microtissues of prescribed spatial organization. As an example application, we bioprint induced pluripotent stem cell-derived cardiac microtissue models with spatially controlled cardiomyocyte and fibroblast cell ratios to replicate the structural and functional features of scarred cardiac tissue that arise following myocardial infarction, including reduced contractility and irregular electrical activity. The bioprinted in vitro model is combined with functional readouts to probe how various pro-regenerative microRNA treatment regimes influence tissue regeneration and recovery of function as a result of cardiomyocyte proliferation. This method is useful for a range of biomedical applications, including the development of precision models to mimic diseases and the screening of drugs, particularly where high cell densities and heterogeneity are important. Cellular models are needed to study disease in vitro and to screen drugs for toxicity and efficacy. Here the authors develop a bioprinting approach to transfer spheroids into self-healing support hydrogels at high resolution, which enables their patterning and fusion into high-cell density microtissues of prescribed spatial organization.