Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
The role of microglial P2X7: modulation of cell death and cytokine release
by
He, Yingbo
, Taylor, Natalie
, Fourgeaud, Lawrence
, Bhattacharya, Anindya
in
Adenosine Triphosphate - analogs & derivatives
/ Adenosine Triphosphate - toxicity
/ Analysis
/ Animals
/ Biomedical and Life Sciences
/ Biomedicine
/ Cell death
/ Cell Death - physiology
/ Cell receptors
/ Cells, Cultured
/ Cytokine
/ Cytokines - secretion
/ Enzyme-linked immunosorbent assay
/ Female
/ Genetic aspects
/ Humans
/ Immunology
/ Inflammation
/ Interleukin-1
/ Mice
/ Mice, Inbred C57BL
/ Mice, Knockout
/ Microglia
/ Microglia - drug effects
/ Microglia - secretion
/ Neurobiology
/ Neuroinflammation
/ Neurology
/ Neurosciences
/ P2X7
/ Physiological aspects
/ Pregnancy
/ Purinergic P2X Receptor Agonists - toxicity
/ Receptors, Purinergic P2X7 - physiology
2017
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The role of microglial P2X7: modulation of cell death and cytokine release
by
He, Yingbo
, Taylor, Natalie
, Fourgeaud, Lawrence
, Bhattacharya, Anindya
in
Adenosine Triphosphate - analogs & derivatives
/ Adenosine Triphosphate - toxicity
/ Analysis
/ Animals
/ Biomedical and Life Sciences
/ Biomedicine
/ Cell death
/ Cell Death - physiology
/ Cell receptors
/ Cells, Cultured
/ Cytokine
/ Cytokines - secretion
/ Enzyme-linked immunosorbent assay
/ Female
/ Genetic aspects
/ Humans
/ Immunology
/ Inflammation
/ Interleukin-1
/ Mice
/ Mice, Inbred C57BL
/ Mice, Knockout
/ Microglia
/ Microglia - drug effects
/ Microglia - secretion
/ Neurobiology
/ Neuroinflammation
/ Neurology
/ Neurosciences
/ P2X7
/ Physiological aspects
/ Pregnancy
/ Purinergic P2X Receptor Agonists - toxicity
/ Receptors, Purinergic P2X7 - physiology
2017
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The role of microglial P2X7: modulation of cell death and cytokine release
by
He, Yingbo
, Taylor, Natalie
, Fourgeaud, Lawrence
, Bhattacharya, Anindya
in
Adenosine Triphosphate - analogs & derivatives
/ Adenosine Triphosphate - toxicity
/ Analysis
/ Animals
/ Biomedical and Life Sciences
/ Biomedicine
/ Cell death
/ Cell Death - physiology
/ Cell receptors
/ Cells, Cultured
/ Cytokine
/ Cytokines - secretion
/ Enzyme-linked immunosorbent assay
/ Female
/ Genetic aspects
/ Humans
/ Immunology
/ Inflammation
/ Interleukin-1
/ Mice
/ Mice, Inbred C57BL
/ Mice, Knockout
/ Microglia
/ Microglia - drug effects
/ Microglia - secretion
/ Neurobiology
/ Neuroinflammation
/ Neurology
/ Neurosciences
/ P2X7
/ Physiological aspects
/ Pregnancy
/ Purinergic P2X Receptor Agonists - toxicity
/ Receptors, Purinergic P2X7 - physiology
2017
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The role of microglial P2X7: modulation of cell death and cytokine release
Journal Article
The role of microglial P2X7: modulation of cell death and cytokine release
2017
Request Book From Autostore
and Choose the Collection Method
Overview
Background
ATP-gated P2X7 is a non-selective cation channel, which participates in a wide range of cellular functions as well as pathophysiological processes including neuropathic pain, immune response, and neuroinflammation. Despite its abundant expression in microglia, the role of P2X7 in neuroinflammation still remains unclear.
Methods
Primary microglia were isolated from cortices of P0-2 C57BL/6 wild-type or P2X7 knockout (P2X7
−/−
) mouse pups. Lipopolysaccharide, lipopolysaccharide plus IFNγ, or IL4 plus IL13 were used to polarize microglia to pro-inflammatory or anti-inflammatory states.
P2rx7
expression level in resting or activated mouse and human microglia was measured by RNA-sequencing and quantitative real-time PCR. Microglial cell death was measured by cell counting kit-8 and immunocytochemistry, and microglial secretion in wild-type or P2X7
−/−
microglia was examined by Luminex multiplex assay or ELISA using P2X7 agonist BzATP or P2X7 antagonist A-804598. P2X7 signaling was analyzed by Western blot.
Results
First, we confirmed that
P2rx7
is constitutively expressed in mouse and human primary microglia. Moreover,
P2rx7
mRNA level was downregulated in mouse microglia under both pro- and anti-inflammatory conditions. Second, P2X7 agonist BzATP caused cell death of mouse microglia, while this effect was suppressed either by P2X7 knockout or by A-804598 under both basal and pro-inflammatory conditions, which suggests the mediating role of P2X7 in BzATP-induced microglial cell death. Third, BzATP-induced release of IL1 family cytokines including IL1α, IL1β, and IL18 was blocked in P2X7
−/−
microglia or by A-804598 in pro-inflammatory microglia, while the release of other cytokines/chemokines was independent of P2X7 activation. These findings support the specific role of P2X7 in IL1 family cytokine release. Finally, P2X7 activation was discovered to be linked to AKT and ERK pathways, which may be the underlying mechanism of P2X7 functions in microglia.
Conclusions
These results reveal that P2X7 mediates BzATP-induced microglial cell death and specific release of IL1 family cytokines, indicating the important role of P2X7 in neuroinflammation and implying the potential of targeting P2X7 for the treatment of neuroinflammatory disorders.
Publisher
BioMed Central,BioMed Central Ltd,BMC
This website uses cookies to ensure you get the best experience on our website.