MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
Journal Article

Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature

2015
Request Book From Autostore and Choose the Collection Method
Overview
Glioblastoma is the most aggressive primary brain tumor, and is associated with a very poor prognosis. In this study we investigated the potential of microRNA expression profiles to predict survival in this challenging disease. MicroRNA and mRNA expression data from glioblastoma (n = 475) and grade II and III glioma (n = 178) were accessed from The Cancer Genome Atlas. LASSO regression models were used to identify a prognostic microRNA signature. Functionally relevant targets of microRNAs were determined using microRNA target prediction, experimental validation and correlation of microRNA and mRNA expression data. A 9-microRNA prognostic signature was identified which stratified patients into risk groups strongly associated with survival (p = 2.26e−09), significant in all glioblastoma subtypes except the non-G-CIMP proneural group. The statistical significance of the microRNA signature was higher than MGMT methylation in temozolomide treated tumors. The 9-microRNA risk score was validated in an independent dataset (p = 4.50e−02) and also stratified patients into high- and low-risk groups in lower grade glioma (p = 5.20e−03). The majority of the 9 microRNAs have been previously linked to glioblastoma biology or treatment response. Integration of the expression patterns of predicted microRNA targets revealed a number of relevant microRNA/target pairs, which were validated in cell lines. We have identified a novel, biologically relevant microRNA signature that stratifies high- and low-risk patients in glioblastoma. MicroRNA/mRNA interactions identified within the signature point to novel regulatory networks. This is the first study to formulate a survival risk score for glioblastoma which consists of microRNAs associated with glioblastoma biology and/or treatment response, indicating a functionally relevant signature. •Used entire TCGA dataset to identify a 9-microRNA signature that predicts outcome in gliobastoma.•8 of the 9 microRNAs have proven roles in glioblastoma biology.•Lasso regression may be a useful statistical tool to extract prognostic signatures from large databases.