MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving
Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving
Journal Article

Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving

2013
Request Book From Autostore and Choose the Collection Method
Overview
Drug-related cues induce craving, which may perpetuate drug use or trigger relapse in addicted individuals. Craving is also under the influence of other factors in daily life, such as drug availability and self-control. Neuroimaging studies using drug cue paradigms have shown frontal lobe involvement in this contextual influence on cue reactivity, but have not clarified how and which frontal area accounts for this phenomenon. We explored frontal lobe contributions to cue-induced drug craving under different intertemporal drug availability conditions by combining transcranial magnetic stimulation and functional magnetic resonance imaging in smokers. We hypothesized that the dorsolateral prefrontal cortex (DLPFC) regulates craving during changes in intertemporal availability. Subjective craving was greater when cigarettes were immediately available, and this effect was eliminated by transiently inactivating the DLPFC with transcranial magnetic stimulation. Functional magnetic resonance imaging demonstrated that the signal most proportional to subjective craving was located in the medial orbitofrontal cortex across all contexts, whereas the DLPFC most strongly encoded intertemporal availability information. The craving-related signal in the medial orbitofrontal cortex was attenuated by inactivation of the DLPFC, particularly when cigarettes were immediately available. Inactivation of the DLPFC also reduced craving-related signals in the anterior cingulate and ventral striatum, areas implicated in transforming value signals into action. These findings indicate that DLPFC builds up value signals based on knowledge of drug availability, and support a model wherein aberrant circuitry linking dorsolateral prefrontal and orbitofrontal cortices may underlie addiction.