MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner
Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner
Journal Article

Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner

2022
Request Book From Autostore and Choose the Collection Method
Overview
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.