MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling
Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling
Journal Article

Identifying effective surveillance measures for swine pathogens using contact networks and mathematical modeling

2025
Request Book From Autostore and Choose the Collection Method
Overview
Infectious diseases in livestock have detrimental effects on the health of animals, the livelihood of farmers, and the meat industry. Understanding the specific pathways of disease spread and evaluating the effectiveness of surveillance measures is critical to preventing large outbreaks. Direct livestock transport, transport tours—where a single truck moves livestock between multiple farms in a single journey—and contacts that livestock have with their surrounding environment have been identified as drivers of disease dissemination. The objective of this study was to assess the role of these different pathways in the transmission of several swine pathogens and to evaluate the efficacy of surveillance strategies in identifying outbreaks. To achieve this, we built contact networks for these modes of disease transmission based on empirical data from the Swiss swine production sector. We developed a stochastic, susceptible-infectious-recovered (SIR) type, herd-based model to simulate the spread of multiple pathogens within farms and between farms along the networks. We parameterized the model for Porcine Reproductive and Respiratory Syndrome (PRRS) virus, African Swine Fever (ASF) virus, and Actinobacillus pleuropneumonia (APP): three pathogens with distinct clinical patterns, modes of transmission, and contact transmission rates. The model provides insight into the contribution of different contact types to disease dispersion. Our findings highlight that direct truck transport and local spread are the main routes of between-farm transmission. In addition, we analyzed the ability of surveillance measures to detect outbreaks from these distinct pathogens spreading along the contact networks. Farmer-based surveillance programs were the only measures that consistently identified outbreaks of APP and PRRS, and they were able to identify ASF outbreaks almost 8 weeks or more before active slaughterhouse- and network-based surveillance. Our model outcomes give evidence of the prominent transmission pathways and surveillance measures, which could help establish programs to prevent the spread of swine infectious diseases.