MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice
Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice
Journal Article

Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice

2019
Request Book From Autostore and Choose the Collection Method
Overview
The timing of puberty is highly sensitive to environmental factors, including endocrine disruptors. Among them, bisphenol A (BPA) has been previously analyzed as potential modifier of puberty. Yet, disparate results have been reported, with BPA advancing, delaying, or being neutral in its effects on puberty onset. Likewise, mechanistic analyses addressing the central and peripheral actions/targets of BPA at puberty remain incomplete and conflictive. We aimed to provide a comprehensive characterization of the impact of early BPA exposures, especially at low, real-life doses, on the postnatal development of hypothalamic Kiss1/NKB neurons, and its functional consequences on female pubertal maturation. Pregnant CD1 female mice were orally administered BPA at 5, 10, or body weight (BW)/d from gestational day 11 to postnatal day 8 (PND8). Vaginal opening, as an external marker of puberty onset, was monitored daily from PND19 to PND30 in the female offspring. Blood and brain samples were collected at PND12, 15, 18, 21, and 30 for measuring circulating levels of gonadotropins and analyzing the hypothalamic expression of Kiss1/kisspeptin and NKB. Perinatal exposure to BPA, in a range of doses largely below the no observed adverse effect level (NOAEL; BW/d, according to the FDA), was associated with pubertal differences in the female progeny compared with those exposed to vehicle alone, with an earlier age of vaginal opening but consistently lower levels of circulating luteinizing hormone. Mice treated with BPA exhibited a persistent, but divergent, impairment of Kiss1 neuronal maturation, with more kisspeptin cells in the rostral (RP3V) hypothalamus but consistently fewer kisspeptin neurons in the arcuate nucleus (ARC). Detailed quantitative analysis of the ARC population, essential for pubertal development, revealed that mice treated with BPA had persistently lower Kiss1 expression during (pre)pubertal maturation, which was associated with lower Tac2 (encoding NKB) levels, even at low doses ( BW/d), in the range of the tolerable daily intake (TDI), recently updated by the European Food Safety Authority. Our data attest to the consistent, but divergent, effects of gestational exposures to low concentrations of BPA, via the oral route, on phenotypic and neuroendocrine markers of puberty in female mice, with an unambiguous impact on the developmental maturation not only of Kiss1, but also of the NKB system, both essential regulators of puberty onset. https://doi.org/10.1289/EHP5570.