MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement
The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement
Journal Article

The comparison of physicochemical and bioactivity properties of different nanoparticles modified calcium silicate-based cement

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background To investigate the effects of adding ZrO₂, TiO₂, and two sizes of hydroxyapatite (HAP) nanoparticles on the physicochemical and bioactivity properties of calcium silicate-based cement (CSC). Methods MTA, PC, and nanoparticle-modified groups (5% and 10% n-ZrO₂, n-TiO₂, n-HAP1, n-HAP2) were evaluated for setting time, compressive strength (1, 7, 14 days), solubility (14 days), and bioactivity. Setting time and compressive strength followed ISO 9917–1:2007, solubility followed a modified ISO 6876:2012, and bioactivity was analyzed using SEM–EDS. Results All groups showed significantly reduced setting times (p < 0.001) compared to MTA and PC, with 10% n-HAP1 showing the greatest reduction. Compressive strength increased over time in all groups except 5% and 10% n-ZrO₂, which remained stable (p > 0.05). MTA had the highest strength at 14 days. MTA’s solubility was higher than PC’s (p < 0.001). All groups, except 10% n-TiO₂, 5% and 10% n-HAP1, showed increased solubility vs. MTA (p < 0.003); all exceeded PC (p < 0.001). SEM after 1 day showed spherical apatite structures, which thickened by days 7 and 14. EDS confirmed Ca/P ratios similar to controls. Conclusions All nanoparticles accelerated the setting time, and only ZrO₂ nanoparticles enhanced early strength. Despite increased solubility, all values remained within acceptable limits. All groups demonstrated bioactivity potential.