MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
Journal Article

Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells

2020
Request Book From Autostore and Choose the Collection Method
Overview
Intestinal health relies on the immunosuppressive activity of CD4 + regulatory T (T reg ) cells 1 . Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1) 2 – 4 . Products of microbial fermentation including butyrate facilitate the generation of peripherally induced T reg (pT reg ) cells 5 – 7 , indicating that metabolites shape the composition of the colonic immune cell population. In addition to dietary components, bacteria modify host-derived molecules, generating a number of biologically active substances. This is epitomized by the bacterial transformation of bile acids, which creates a complex pool of steroids 8 with a range of physiological functions 9 . Here we screened the major species of deconjugated bile acids for their ability to potentiate the differentiation of pT reg cells. We found that the secondary bile acid 3β-hydroxydeoxycholic acid (isoDCA) increased Foxp3 induction by acting on dendritic cells (DCs) to diminish their immunostimulatory properties. Ablating one receptor, the farnesoid X receptor, in DCs enhanced the generation of T reg cells and imposed a transcriptional profile similar to that induced by isoDCA, suggesting an interaction between this bile acid and nuclear receptor. To investigate isoDCA in vivo, we took a synthetic biology approach and designed minimal microbial consortia containing engineered Bacteroides strains. IsoDCA-producing consortia increased the number of colonic RORγt-expressing T reg cells in a CNS1-dependent manner, suggesting enhanced extrathymic differentiation. The secondary bile acid 3β-hydroxy-deoxycholic (isodeoxycholic) acid, produced by gut bacteria, promotes the generation of colonic extrathymic regulatory T cells, whose immunosuppressive activities are known to be essential for intestinal health.