MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance
Journal Article

Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance

2015
Request Book From Autostore and Choose the Collection Method
Overview
Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.3.0. For T1-weighted MRI acquired from 288 participants in a multi-centre clinical trial in Alzheimer's disease we find a high correlation between SPM12 TIV and manual TIV (R2=0.940, 95% Confidence Interval (0.924, 0.953)), with a small mean difference (SPM12 40.4±35.4ml lower than manual, amounting to 2.8% of the overall mean TIV in the study). The correlation with manual measurements (the key aspect when using TIV as a covariate) for SPM12 was significantly higher (p<0.001) than for either SPM8 (R2=0.577 CI (0.500, 0.644)) or FreeSurfer (R2=0.801 CI (0.744, 0.843)). These results suggest that SPM12 TIV estimates are an acceptable substitute for labour-intensive manual estimates even in the challenging context of multiple centres and the presence of neurodegenerative pathology. We also briefly discuss some aspects of the statistical modelling approaches to adjust for TIV. [Display omitted] •288 T1 MRI from multiple scanners were manually segmented for intracranial volume.•We compare SPM12 with the current methods of estimating intracranial volume.•SPM12 shows a very high correlation with manual measures and little bias.•Newer automated volume measures are more accurate controls for head size variation.