MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer
Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer
Journal Article

Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer

2021
Request Book From Autostore and Choose the Collection Method
Overview
A subset of breast cancer patients benefits from preoperative bevacizumab and chemotherapy, but validated predictive biomarkers are lacking. Here, we aimed to evaluate tissue-based angiogenesis markers for potential predictive value regarding response to neoadjuvant bevacizumab treatment in breast cancer. In this randomized 1:1 phase II clinical trial, 132 patients with large or locally advanced HER2-negative tumors received chemotherapy ± bevacizumab. Dual Factor VIII/Ki-67 immunohistochemical staining was performed on core needle biopsies at baseline and week 12. Microvessel density (MVD), proliferative microvessel density (pMVD; Factor VIII/Ki-67 co-expression), glomeruloid microvascular proliferation (GMP), and a gene expression angiogenesis signature score, were studied in relation to pathologic complete response (pCR), clinico-pathologic features and intrinsic molecular subtype. We found that high baseline MVD (by median) significantly predicted pCR in the bevacizumab-arm (odds ratio 4.9, P  = 0.012). High pMVD, presence of GMP, and the angiogenesis signature score did not predict pCR, but were associated with basal-like ( P  ≤ 0.009) and triple negative phenotypes ( P  ≤ 0.041). pMVD and GMP did also associate with high-grade tumors ( P  ≤ 0.048). To conclude, high baseline MVD significantly predicted response to bevacizumab treatment. In contrast, pMVD, GMP, and the angiogenesis signature score, did not predict response, but associated with aggressive tumor features, including basal-like and triple-negative phenotypes.