MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol
Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol
Journal Article

Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol

2020
Request Book From Autostore and Choose the Collection Method
Overview
Endocytosis is a fundamental process occurring in all eukaryotic cells. Live cell imaging of endocytosis has helped to decipher many of its mechanisms and regulations. With the pulsed-pH (ppH) protocol, one can detect the formation of individual endocytic vesicles (EVs) with an unmatched temporal resolution of 2 s. The ppH protocol makes use of cargo protein (e.g., the transferrin receptor) coupled to a pH-sensitive fluorescent protein, such as superecliptic pHluorin (SEP), which is brightly fluorescent at pH 7.4 but not fluorescent at pH <6.0. If the SEP moiety is at the surface, its fluorescence will decrease when cells are exposed to a low pH (5.5) buffer. If the SEP moiety has been internalized, SEP will remain fluorescent even during application of the low pH buffer. Fast perfusion enables the complete exchange of low and high pH extracellular solutions every 2 s, defining the temporal resolution of the technique. Unlike other imaging-based endocytosis assays, the ppH protocol detects EVs without a priori hypotheses on the dynamics of vesicle formation. Here, we explain how the ppH protocol quantifies the endocytic activity of living cells and the recruitment of associated proteins in real time. We provide a step-by-step procedure for expression of the reporter proteins with transient transfection, live cell image acquisition with synchronized pH changes and automated analysis. The whole protocol can be performed in 2 d to provide quantitative information on the endocytic process being studied. This protocol describes a procedure for live-cell imaging of endocytic events in cultured cells using a pH-sensitive fluorophore and fast extracellular pH changes. A MATLAB-based analysis pipeline is provided to facilitate automated data processing.