MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants
Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants
Journal Article

Insights into the N-Sulfation Mechanism: Molecular Dynamics Simulations of the N-Sulfotransferase Domain of Ndst1 and Mutants

2013
Request Book From Autostore and Choose the Collection Method
Overview
Sulfation patterns along glycosaminoglycan (GAG) chains dictate their functional role. The N-deacetylase N-sulfotransferase family (NDST) catalyzes the initial downstream modification of heparan sulfate and heparin chains by removing acetyl groups from subsets of N-acetylglucosamine units and, subsequently, sulfating the residual free amino groups. These enzymes transfer the sulfuryl group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS), yielding sulfated sugar chains and 3'-phosphoadenosine-5'-phosphate (PAP). For the N-sulfotransferase domain of NDST1, Lys833 has been implicated to play a role in holding the substrate glycan moiety close to the PAPS cofactor. Additionally, Lys833 together with His716 interact with the sulfonate group, stabilizing the transition state. Such a role seems to be shared by Lys614 through donation of a proton to the bridging oxygen of the cofactor, thereby acting as a catalytic acid. However, the relevance of these boundary residues at the hydrophobic cleft is still unclear. Moreover, whether Lys833, His716 and Lys614 play a role in both glycan recognition and glycan sulfation remains elusive. In this study we evaluate the contribution of NDST mutants (Lys833, His716 and Lys614) to dynamical effects during sulfate transfer using comprehensive combined docking and essential dynamics. In addition, the binding location of the glycan moiety, PAPS and PAP within the active site of NDST1 throughout the sulfate transfer were determined by intermediate state analysis. Furthermore, NDST1 mutants unveiled Lys833 as vital for both the glycan binding and subsequent N-sulfotransferase activity of NDST1.