MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties
Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties
Journal Article

Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties

2023
Request Book From Autostore and Choose the Collection Method
Overview
Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in nanotechnology due to their unique properties and potential applications in various fields, including insecticidal and antibacterial activities. The ZnO-NPs were biosynthesized by Eriobotrya japonica leaf extract and characterized by various techniques such as UV–visible (UV–vis) spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential analysis. The results of SEM revealed that NPs were irregular and spherical-shaped, with a diameter between 5 and 27 nm. Meanwhile, DLS supported that the measured size distributions were 202.8 and 94.7 nm at 11.1° and 90.0°, respectively, which supported the polydisperse nature of NPs, and the corresponding zeta potential was −20.4 mV. The insecticidal activity of the produced ZnO-NPs was determined against the adult stage of coleopteran pests, Sitophilus oryzae (Linnaeus) (Curculionidae) and Tribolium castaneum (Herbst) (Tenebrionidae). The LC50 values of ZnO-NPs against adults of S. oryzae and T. castaneum at 24 h of exposure were 7125.35 and 5642.65 μg/mL, respectively, whereas the LC90 values were 121,824.56 and 66,825.76 μg/mL, respectively. Moreover, the biosynthesized nanoparticles exhibited antibacterial activity against three potato bacterial pathogens, and the size of the inhibition zone was concentration-dependent. The data showed that the inhibition zone size increased with an increase in the concentration of nanoparticles for all bacterial isolates tested. The highest inhibition zone was observed for Ralstonia solanacearum at a concentration of 5 µg/mL, followed by Pectobacterium atrosepticum and P. carotovorum. Eventually, ZnO-NPs could be successfully used as an influential agent in pest management programs against stored-product pests and potato bacterial diseases.