MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
Journal Article

Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification

2024
Request Book From Autostore and Choose the Collection Method
Overview
The integration of artificial intelligence (AI) in diagnosing diabetic retinopathy, a major contributor to global vision impairment, is becoming increasingly pronounced. Notably, the detection of vision-threatening diabetic retinopathy (VTDR) has been significantly fortified through automated techniques. Traditionally, the reliance on manual analysis of retinal images, albeit slow and error-prone, constituted the conventional approach. Addressing this, our study introduces a novel methodology that amplifies the robustness and precision of the detection process. This is complemented by the groundbreaking Hierarchical Block Attention (HBA) and HBA-U-Net architecture, which notably propel attention mechanisms in image segmentation. This innovative model refines image processing without imposing excessive computational demands by honing in on individual pixel intricacies, spatial relationships, and channel-specific attention. Building upon this innovation, our proposed method employs a multi-stage strategy encompassing data pre-processing, feature extraction via a hybrid CNN-SVD model, and classification employing an amalgamation of Improved Support Vector Machine-Radial Basis Function (ISVM-RBF), DT, and KNN techniques. Rigorously tested on the IDRiD dataset classified into five severity tiers, the hybrid model yields remarkable performance, achieving a 99.18% accuracy, 98.15% sensitivity, and 100% specificity in VTDR detection, thus surpassing existing methods. These results underscore a more potent avenue for diagnosing and addressing this crucial ocular condition while underscoring AI’s transformative potential in medical care, particularly in ophthalmology.