MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
Journal Article

Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity

2011
Request Book From Autostore and Choose the Collection Method
Overview
Lipid metabolism in obesity The function of the endoplasmic reticulum (ER) changes during obesity: in the liver, ER-associated protein synthesis slows down, and genes involved in lipid metabolism are switched on. ER stress is an important factor in obesity, insulin resistance and type 2 diabetes. A possible mechanism for this link has now been identified. Perturbation of fatty acid and lipid metabolism in the ER inhibits the activity of SERCA, the main ER calcium importer. Changing the lipid composition or increasing the amount of SERCA in the ER is shown to relieve the stress and improve glucose homeostasis in vivo . The endoplasmic reticulum (ER) is the main site of protein and lipid synthesis, membrane biogenesis, xenobiotic detoxification and cellular calcium storage, and perturbation of ER homeostasis leads to stress and the activation of the unfolded protein response 1 . Chronic activation of ER stress has been shown to have an important role in the development of insulin resistance and diabetes in obesity 2 . However, the mechanisms that lead to chronic ER stress in a metabolic context in general, and in obesity in particular, are not understood. Here we comparatively examined the proteomic and lipidomic landscape of hepatic ER purified from lean and obese mice to explore the mechanisms of chronic ER stress in obesity. We found suppression of protein but stimulation of lipid synthesis in the obese ER without significant alterations in chaperone content. Alterations in ER fatty acid and lipid composition result in the inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and ER stress. Correcting the obesity-induced alteration of ER phospholipid composition or hepatic Serca overexpression in vivo both reduced chronic ER stress and improved glucose homeostasis. Hence, we established that abnormal lipid and calcium metabolism are important contributors to hepatic ER stress in obesity.
Publisher
Nature Publishing Group UK,Nature Publishing Group