MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Journal Article

Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom

2022
Request Book From Autostore and Choose the Collection Method
Overview
Magnetic fluid hyperthermia (MFH) is a novel reliable technique with excellent potential for thermal therapies and treating breast tumours. This method involves injecting a magnetic nanofluid into the tumour and applying an external AC magnetic field to induce heat in the magnetic nanoparticles (MNPs) and raise the tumour temperature to ablation temperature ranges. Because of the complexity of considering and coupling all different physics involves in this phenomenon and also due to the intricacy of a thorough FEM numerical study, few FEM-based studies address the entire MFH process as similar to reality as possible. The current study investigates a FEM-based three-dimensional numerical simulation of MFH of breast tumours as a multi-physics problem. An anatomically realistic breast phantom (ARBP) is considered, some magnetic nanofluid is injected inside the tumour, and the diffusion phenomenon is simulated. Then, the amount of heat generated in the MNP-saturated tumour area due to an external AC magnetic field is simulated. In the end, the fraction of tumour tissue necrotized by this temperature rise is evaluated. The study’s results demonstrate that by injecting nanofluid and utilizing seven circular copper windings with each coil carrying 400 A current with a frequency of 400 kHz for generating the external AC magnetic field, the temperature in tumour tissue can be raised to a maximum of about 51.4°C, which leads to necrosis of entire tumour tissue after 30 minutes of electromagnetic field (EMF) exposure. This numerical platform can depict all four various physics involved in the MFH of breast tumours by numerically solving all different equation sets coupled together with high precision. Thus, the proposed model can be utilized by clinicians as a reliable tool for predicting and identifying the approximate amount of temperature rise and the necrotic fraction of breast tumour, which can be very useful to opt for the best MFH therapeutic procedure and conditions based on various patients. In future works, this numerical platform’s results should be compared with experimental in-vivo results to improve and modify this platform in order to be ready for clinical applications.

MBRLCatalogueRelatedBooks