MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A disinhibitory microcircuit for associative fear learning in the auditory cortex
A disinhibitory microcircuit for associative fear learning in the auditory cortex
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A disinhibitory microcircuit for associative fear learning in the auditory cortex
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A disinhibitory microcircuit for associative fear learning in the auditory cortex
A disinhibitory microcircuit for associative fear learning in the auditory cortex

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A disinhibitory microcircuit for associative fear learning in the auditory cortex
A disinhibitory microcircuit for associative fear learning in the auditory cortex
Journal Article

A disinhibitory microcircuit for associative fear learning in the auditory cortex

2011
Request Book From Autostore and Choose the Collection Method
Overview
Learning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated cholinergic activation of layer 1 interneurons, in turn generating inhibition of layer 2/3 parvalbumin-positive interneurons. Importantly, pharmacological or optogenetic block of pyramidal neuron disinhibition abolishes fear learning. Together, these data demonstrate that stimulus convergence in the auditory cortex is necessary for associative fear learning to complex tones, define the circuit elements mediating this convergence and suggest that layer-1-mediated disinhibition is an important mechanism underlying learning and information processing in neocortical circuits. Stimulus convergence and concomitant auditory cortex disinhibition are essential for fear learning. Sounds like fear It is generally recognized that learned behavioural responses, such as those associated with sound, involve changes within specific neural circuits. However, we are only beginning to understand how those changes are implemented and what interactions between different types of neurons within the circuits contribute to the learning process. Using classical sound-based fear-conditioning in mice as a model system, Andreas Lüthi and colleagues identify a distinct disinhibition-based circuit that is critical to learning. The neural circuit involved is not specific to auditory cortex, and may represent a general mechanism through which cholinergic neuromodulation gates cortical activity.