MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)
Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)
Journal Article

Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)

2010
Request Book From Autostore and Choose the Collection Method
Overview
Human patients with myoclonic epilepsy with ragged-red fibers (MERRF) suffer from regionalized pathology caused by a mutation in the mitochondrial DNA (m.8344A→G). In MERRF-syndrome brain and skeletal muscles are predominantly affected, despite mtDNA being present in any tissue. In the past such tissue-specificity could not be explained by varying mtDNA mutation loads. In search for a region-specific pathology in human individuals we determined the mtDNA/nDNA ratios along with the mutation loads in 43 different post mortem tissue samples of a 16-year-old female MERRF patient and in four previously healthy victims of motor vehicle accidents. In brain and muscle we further determined the quantity of mitochondrial proteins (COX subunits II and IV), transcription factors (NRF1 and TFAM), and VDAC1 (Porin) as a marker for the mitochondrial mass. In the patient the mutation loads varied merely between 89-100%. However, mtDNA copy numbers were increased 3-7 fold in predominantly affected brain areas (e.g. hippocampus, cortex and putamen) and in skeletal muscle. Similar increases were absent in unaffected tissues (e.g. heart, lung, kidney, liver, and gastrointestinal organs). Such mtDNA copy number increase was not paralleled by an augmentation of mitochondrial mass in some investigated tissues, predominantly in the most affected tissue regions of the brain. We thus conclude that \"futile\" stimulation of mtDNA replication per se or a secondary failure to increase the mitochondrial mass may contribute to the regionalized pathology seen in MERRF-syndrome.