MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system
Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system
Journal Article

Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system

2018
Request Book From Autostore and Choose the Collection Method
Overview
Summary Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL‐type ATPase and an S5‐fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsis thaliana mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout (KO) mutants were not available and assessment of loss of function relied only on RNAi strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing. Here, we used a Streptococcus pyogenes Cas9 (SpCas9)‐mediated KO strategy to functionally study HvMORC1, one of the current seven MORC members of barley. Using a novel barley RNA Pol III‐dependent U3 small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation frequency in HvMORC1. High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%–100%), which constitutes an important improvement of the gene‐editing technology in cereals. Corroborating and extending earlier findings, SpCas9‐edited hvmorc1‐KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while morc1 mutants of either plant showed de‐repressed expression of transposable elements (TEs), substantiating that plant MORC proteins contribute to genome stabilization in monocotyledonous and dicotyledonous plants.

MBRLCatalogueRelatedBooks